Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38352526

RESUMO

Bacteriophages, the viruses of bacteria, are proposed to drive bacterial population dynamics, yet direct evidence of their impact on natural populations is limited. Here we identified viral sequences in a metapopulation of wild plant-associated Pseudomonas spp. genomes. We discovered that the most abundant viral cluster does not encode an intact phage but instead encodes a tailocin - a phage-derived element that bacteria use to kill competitors for interbacterial warfare. Each pathogenic Pseudomonas sp. strain carries one of a few distinct tailocin variants, which target variable polysaccharides in the outer membrane of co-occurring pathogenic strains. Analysis of historic herbarium samples from the last 170 years revealed that the same tailocin and receptor variants have persisted in the Pseudomonas populations for at least two centuries, suggesting the continued use of a defined set of tailocin haplotypes and receptors. These results indicate that tailocin genetic diversity can be mined to develop targeted "tailocin cocktails" for microbial control. One-Sentence Summary: Bacterial pathogens in a host-associated metapopulation use a repurposed prophage to kill their competitors.

2.
ISME J ; 18(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38365244

RESUMO

Members of microbial communities can substantially overlap in substrate use. However, what enables functionally redundant microorganisms to coassemble or even stably coexist remains poorly understood. Here, we show that during unstable successional dynamics on complex, natural organic matter, functionally redundant bacteria can coexist by partitioning low-concentration substrates even though they compete for one simple, dominant substrate. We allowed ocean microbial communities to self-assemble on leachates of the brown seaweed Fucus vesiculosus and then analyzed the competition among 10 taxonomically diverse isolates representing two distinct stages of the succession. All, but two isolates, exhibited an average of 90% ± 6% pairwise overlap in resource use, and functional redundancy of isolates from the same assembly stage was higher than that from between assembly stages, leading us to construct a simpler four-isolate community with two isolates from each of the early and late stages. We found that, although the short-term dynamics of the four-isolate communities in F. vesiculosus leachate was dependent on initial isolate ratios, in the long term, the four isolates stably coexist in F. vesiculosus leachate, albeit with some strains at low abundance. We therefore explored the potential for nonredundant substrate use by genomic content analysis and RNA expression patterns. This analysis revealed that the four isolates mainly differed in peripheral metabolic pathways, such as the ability to degrade pyrimidine, leucine, and tyrosine, as well as aromatic substrates. These results highlight the importance of fine-scale differences in metabolic strategies for supporting the frequently observed coexistence of large numbers of rare organisms in natural microbiomes.


Assuntos
Microbiota , Alga Marinha , Bactérias/genética
3.
Nat Commun ; 15(1): 986, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307857

RESUMO

Microalgae are a renewable and promising biomass for large-scale biofuel, food and nutrient production. However, their efficient exploitation depends on our knowledge of the cell wall composition and organization as it can limit access to high-value molecules. Here we provide an atomic-level model of the non-crystalline and water-insoluble glycoprotein-rich cell wall of Chlamydomonas reinhardtii. Using in situ solid-state and sensitivity-enhanced nuclear magnetic resonance, we reveal unprecedented details on the protein and carbohydrate composition and their nanoscale heterogeneity, as well as the presence of spatially segregated protein- and glycan-rich regions with different dynamics and hydration levels. We show that mannose-rich lower-molecular-weight proteins likely contribute to the cell wall cohesion by binding to high-molecular weight protein components, and that water provides plasticity to the cell-wall architecture. The structural insight exemplifies strategies used by nature to form cell walls devoid of cellulose or other glycan polymers.


Assuntos
Chlamydomonas reinhardtii , Chlamydomonas , Chlamydomonas reinhardtii/metabolismo , Glicoproteínas/metabolismo , Parede Celular/metabolismo , Celulose/metabolismo , Água/metabolismo
4.
PLoS Biol ; 21(5): e3002127, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200394

RESUMO

Receptors that distinguish the multitude of microbes surrounding plants in the environment enable dynamic responses to the biotic and abiotic conditions encountered. In this study, we identify and characterise a glycan receptor kinase, EPR3a, closely related to the exopolysaccharide receptor EPR3. Epr3a is up-regulated in roots colonised by arbuscular mycorrhizal (AM) fungi and is able to bind glucans with a branching pattern characteristic of surface-exposed fungal glucans. Expression studies with cellular resolution show localised activation of the Epr3a promoter in cortical root cells containing arbuscules. Fungal infection and intracellular arbuscule formation are reduced in epr3a mutants. In vitro, the EPR3a ectodomain binds cell wall glucans in affinity gel electrophoresis assays. In microscale thermophoresis (MST) assays, rhizobial exopolysaccharide binding is detected with affinities comparable to those observed for EPR3, and both EPR3a and EPR3 bind a well-defined ß-1,3/ß-1,6 decasaccharide derived from exopolysaccharides of endophytic and pathogenic fungi. Both EPR3a and EPR3 function in the intracellular accommodation of microbes. However, contrasting expression patterns and divergent ligand affinities result in distinct functions in AM colonisation and rhizobial infection in Lotus japonicus. The presence of Epr3a and Epr3 genes in both eudicot and monocot plant genomes suggest a conserved function of these receptor kinases in glycan perception.


Assuntos
Lotus , Micorrizas , Rhizobium , Micorrizas/genética , Lotus/genética , Lotus/metabolismo , Lotus/microbiologia , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/metabolismo , Nódulos Radiculares de Plantas/microbiologia , Rhizobium/metabolismo , Raízes de Plantas/metabolismo , Mutação , Simbiose/genética , Fosfotransferases/metabolismo , Polissacarídeos/metabolismo , Glucanos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas
5.
mBio ; 14(3): e0065823, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37042761

RESUMO

Pathogenic microbial ecosystems are often polymicrobial, and interbacterial interactions drive emergent properties of these communities. In the oral cavity, Streptococcus gordonii is a foundational species in the development of plaque biofilms, which can contribute to periodontal disease and, after gaining access to the bloodstream, target remote sites such as heart valves. Here, we used a transposon sequencing (Tn-Seq) library of S. gordonii to identify genes that influence fitness in a murine abscess model, both as a monoinfection and as a coinfection with an oral partner species, Porphyromonas gingivalis. In the context of a monoinfection, conditionally essential genes were widely distributed among functional pathways. Coinfection with P. gingivalis almost completely changed the nature of in vivo gene essentiality. Community-dependent essential (CoDE) genes under the coinfection condition were primarily related to DNA replication, transcription, and translation, indicating that robust growth and replication are required to survive with P. gingivalis in vivo. Interestingly, a group of genes in an operon encoding streptococcal receptor polysaccharide (RPS) were associated with decreased fitness of S. gordonii in a coinfection with P. gingivalis. Individual deletion of two of these genes (SGO_2020 and SGO_2024) resulted in the loss of RPS production by S. gordonii and increased susceptibility to killing by neutrophils. P. gingivalis protected the RPS mutants by inhibiting neutrophil recruitment, degranulation, and neutrophil extracellular trap (NET) formation. These results provide insight into genes and functions that are important for S. gordonii survival in vivo and the nature of polymicrobial synergy with P. gingivalis. Furthermore, we show that RPS-mediated immune protection in S. gordonii is dispensable and detrimental in the presence of a synergistic partner species that can interfere with neutrophil killing mechanisms. IMPORTANCE Bacteria responsible for diseases originating at oral mucosal membranes assemble into polymicrobial communities. However, we know little regarding the fitness determinants of the organisms that initiate community formation. Here, we show that the extracellular polysaccharide of Streptococcus gordonii, while important for streptococcal survival as a monoinfection, is detrimental to survival in the context of a coinfection with Porphyromonas gingivalis. We found that the presence of P. gingivalis compensates for immune protective functions of extracellular polysaccharide, rendering production unnecessary. The results show that fitness determinants of bacteria in communities differ substantially from those of individual species in isolation. Furthermore, constituents of communities can undertake activities that relieve the burden of energetically costly biosynthetic reactions on partner species.


Assuntos
Coinfecção , Streptococcus gordonii , Animais , Camundongos , Streptococcus gordonii/genética , Coinfecção/microbiologia , Ecossistema , Biofilmes , Boca
6.
Proc Natl Acad Sci U S A ; 119(51): e2214703119, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36508666

RESUMO

Plants have evolved the ability to distinguish between symbiotic and pathogenic microbial signals. However, potentially cooperative plant-microbe interactions often abort due to incompatible signaling. The Nodulation Specificity 1 (NS1) locus in the legume Medicago truncatula blocks tissue invasion and root nodule induction by many strains of the nitrogen-fixing symbiont Sinorhizobium meliloti. Controlling this strain-specific nodulation blockade are two genes at the NS1 locus, designated NS1a and NS1b, which encode malectin-like leucine-rich repeat receptor kinases. Expression of NS1a and NS1b is induced upon inoculation by both compatible and incompatible Sinorhizobium strains and is dependent on host perception of bacterial nodulation (Nod) factors. Both presence/absence and sequence polymorphisms of the paired receptors contribute to the evolution and functional diversification of the NS1 locus. A bacterial gene, designated rns1, is required for activation of NS1-mediated nodulation restriction. rns1 encodes a type I-secreted protein and is present in approximately 50% of the nearly 250 sequenced S. meliloti strains but not found in over 60 sequenced strains from the closely related species Sinorhizobium medicae. S. meliloti strains lacking functional rns1 are able to evade NS1-mediated nodulation blockade.


Assuntos
Medicago truncatula , Sinorhizobium meliloti , Sinorhizobium meliloti/genética , Medicago truncatula/genética , Medicago truncatula/microbiologia , Simbiose/genética , Genes Bacterianos , Especificidade da Espécie , Fixação de Nitrogênio
7.
mBio ; 13(5): e0229522, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36069736

RESUMO

Kingella kingae is a leading cause of bone and joint infections and other invasive diseases in young children. A key K. kingae virulence determinant is a secreted exopolysaccharide that mediates resistance to serum complement and neutrophils and is required for full pathogenicity. The K. kingae exopolysaccharide is a galactofuranose homopolymer called galactan and is encoded by the pamABC genes in the pamABCDE locus. In this study, we sought to define the mechanism by which galactan is tethered on the bacterial surface, a prerequisite for mediating evasion of host immune mechanisms. We found that the pamD and pamE genes encode glycosyltransferases and are required for synthesis of an atypical lipopolysaccharide (LPS) O-antigen. The LPS O-antigen in turn is required for anchoring of galactan, a novel mechanism for association of an exopolysaccharide with the bacterial surface. IMPORTANCE Kingella kingae is an emerging pediatric pathogen and produces invasive disease by colonizing the oropharynx, invading the bloodstream, and disseminating to distant sites. This organism produces a uniquely multifunctional exopolysaccharide called galactan that is critical for virulence and promotes intravascular survival by mediating resistance to serum and neutrophils. In this study, we established that at least some galactan is anchored to the bacterial surface via a novel structural interaction with an atypical lipopolysaccharide O-antigen. Additionally, we demonstrated that the atypical O-antigen is synthesized by the products of the pamD and pamE genes, located downstream of the gene cluster responsible for galactan biosynthesis. This work addresses how the K. kingae exopolysaccharide can mediate innate immune resistance and advances understanding of bacterial exopolysaccharides and lipopolysaccharides.


Assuntos
Kingella kingae , Infecções por Neisseriaceae , Humanos , Criança , Pré-Escolar , Kingella kingae/química , Lipopolissacarídeos , Antígenos O/genética , Galactanos , Glicosiltransferases/genética , Infecções por Neisseriaceae/microbiologia
8.
Nat Commun ; 13(1): 5226, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064941

RESUMO

O antigens are ubiquitous protective extensions of lipopolysaccharides in the extracellular leaflet of the Gram-negative outer membrane. Following biosynthesis in the cytosol, the lipid-linked polysaccharide is transported to the periplasm by the WzmWzt ABC transporter. Often, O antigen secretion requires the chemical modification of its elongating terminus, which the transporter recognizes via a carbohydrate-binding domain (CBD). Here, using components from A. aeolicus, we identify the O antigen structure with methylated mannose or rhamnose as its cap. Crystal and cryo electron microscopy structures reveal how WzmWzt recognizes this cap between its carbohydrate and nucleotide-binding domains in a nucleotide-free state. ATP binding induces drastic conformational changes of its CBD, terminating interactions with the O antigen. ATPase assays and site directed mutagenesis reveal reduced hydrolytic activity upon O antigen binding, likely to facilitate polymer loading into the ABC transporter. Our results elucidate critical steps in the recognition and translocation of polysaccharides by ABC transporters.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antígenos O , Transportadores de Cassetes de Ligação de ATP/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/metabolismo , Hidrólise , Antígenos O/química
9.
Nanoscale ; 14(24): 8806-8817, 2022 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-35686584

RESUMO

Bacterial endotoxin, a major component of the Gram-negative bacterial outer membrane leaflet, is a lipopolysaccharide shed from bacteria during their growth and infection and can be utilized as a biomarker for bacterial detection. Here, the surface enhanced Raman scattering (SERS) spectra of eleven bacterial endotoxins with an average detection amount of 8.75 pg per measurement have been obtained based on silver nanorod array substrates, and the characteristic SERS peaks have been identified. With appropriate spectral pre-processing procedures, different classical machine learning algorithms, including support vector machine, k-nearest neighbor, random forest, etc., and a modified deep learning algorithm, RamanNet, have been applied to differentiate and classify these endotoxins. It has been found that most conventional machine learning algorithms can attain a differentiation accuracy of >99%, while RamanNet can achieve 100% accuracy. Such an approach has the potential for precise classification of endotoxins and could be used for rapid medical diagnoses and therapeutic decisions for pathogenic infections.


Assuntos
Nanotubos , Análise Espectral Raman , Bactérias , Endotoxinas , Aprendizado de Máquina , Prata , Análise Espectral Raman/métodos
10.
J Am Chem Soc ; 143(46): 19374-19388, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34735142

RESUMO

Microalgae are photosynthetic organisms widely distributed in nature and serve as a sustainable source of bioproducts. Their carbohydrate components are also promising candidates for bioenergy production and bioremediation, but the structural characterization of these heterogeneous polymers in cells remains a formidable problem. Here we present a widely applicable protocol for identifying and quantifying the glycan content using magic-angle-spinning (MAS) solid-state NMR (ssNMR) spectroscopy, with validation from glycosyl linkage and composition analysis deduced from mass-spectrometry (MS). Two-dimensional 13C-13C correlation ssNMR spectra of a uniformly 13C-labeled green microalga Parachlorella beijerinckii reveal that starch is the most abundant polysaccharide in a naturally cellulose-deficient strain, and this polymer adopts a well-organized and highly rigid structure in the cell. Some xyloses are present in both the mobile and rigid domains of the cell wall, with their chemical shifts partially aligned with the flat-ribbon 2-fold xylan identified in plants. Surprisingly, most other carbohydrates are largely mobile, regardless of their distribution in glycolipids or cell walls. These structural insights correlate with the high digestibility of this cellulose-deficient strain, and the in-cell ssNMR methods will facilitate the investigations of other economically important algae species.


Assuntos
Microalgas/química , Ressonância Magnética Nuclear Biomolecular , Polissacarídeos/análise , Configuração de Carboidratos , Microalgas/citologia
11.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34716271

RESUMO

Plants and animals use cell surface receptors to sense and interpret environmental signals. In legume symbiosis with nitrogen-fixing bacteria, the specific recognition of bacterial lipochitooligosaccharide (LCO) signals by single-pass transmembrane receptor kinases determines compatibility. Here, we determine the structural basis for LCO perception from the crystal structures of two lysin motif receptor ectodomains and identify a hydrophobic patch in the binding site essential for LCO recognition and symbiotic function. We show that the receptor monitors the composition of the amphiphilic LCO molecules and uses kinetic proofreading to control receptor activation and signaling specificity. We demonstrate engineering of the LCO binding site to fine-tune ligand selectivity and correct binding kinetics required for activation of symbiotic signaling in plants. Finally, the hydrophobic patch is found to be a conserved structural signature in this class of LCO receptors across legumes that can be used for in silico predictions. Our results provide insights into the mechanism of cell-surface receptor activation by kinetic proofreading of ligands and highlight the potential in receptor engineering to capture benefits in plant-microbe interactions.


Assuntos
Fabaceae/genética , Lipopolissacarídeos/metabolismo , Simbiose/fisiologia , Fabaceae/metabolismo , Expressão Gênica/genética , Regulação da Expressão Gênica de Plantas/genética , Cinética , Lipopolissacarídeos/genética , Micorrizas/fisiologia , Proteínas de Plantas/genética , Plantas/metabolismo , Rhizobium/fisiologia , Transdução de Sinais , Simbiose/genética
12.
Int J Mol Sci ; 22(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34681907

RESUMO

Huanglongbing (HLB) disease, also known as citrus greening disease, was first reported in the US in 2005. Since then, the disease has decimated the citrus industry in Florida, resulting in billions of dollars in crop losses and the destruction of thousands of acres of citrus groves. The causative agent of citrus greening disease is the phloem limited pathogen Candidatus Liberibacter asiaticus. As it has not been cultured, very little is known about the structural biology of the organism. Liberibacter are part of the Rhizobiaceae family, which includes nitrogen-fixing symbionts of legumes as well as the Agrobacterium plant pathogens. To better understand the Liberibacter genus, a closely related culturable bacterium (Liberibacter crescens or Lcr) has attracted attention as a model organism for structural and functional genomics of Liberibacters. Given that the structure of lipopolysaccharides (LPS) from Gram-negative bacteria plays a crucial role in mediating host-pathogen interactions, we sought to characterize the LPS from Lcr. We found that the major lipid A component of the LPS consisted of a pentaacylated molecule with a ß-6-GlcN disaccharide backbone lacking phosphate. The polysaccharide portion of the LPS was unusual compared to previously described members of the Rhizobiaceae family in that it contained ribofuranosyl residues. The LPS structure presented here allows us to extrapolate known LPS structure/function relationships to members of the Liberibacter genus which cannot yet be cultured. It also offers insights into the biology of the organism and how they manage to effectively attack citrus trees.


Assuntos
Lipídeo A/análise , Lipopolissacarídeos/análise , Lipopolissacarídeos/química , Sequência de Carboidratos , Liberibacter/metabolismo , Lipídeo A/química , Peso Molecular
13.
Viruses ; 13(8)2021 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-34452516

RESUMO

Bacteriophages (phages) are predicted to be the most ubiquitous biological entity on earth, and yet, there are still vast knowledge gaps in our understanding of phage diversity and phage-host interactions. Approximately one hundred Acinetobacter-infecting DNA viruses have been identified, and in this report, we describe eight more. We isolated two typical dsDNA lytic podoviruses (CAP1-2), five unique dsRNA lytic cystoviruses (CAP3-7), and one dsDNA lysogenic siphovirus (SLAP1), all capable of infecting the multidrug resistant isolate Acinetobacter radioresistens LH6. Using transmission electron microscopy, bacterial mutagenesis, phage infectivity assays, carbohydrate staining, mass-spectrometry, genomic sequencing, and comparative studies, we further characterized these phages. Mutation of the LH6 initiating glycosyltransferase homolog, PglC, necessary for both O-linked glycoprotein and capsular polysaccharide (CPS) biosynthesis, prevented infection by the lytic podovirus CAP1, while mutation of the pilin protein, PilA, prevented infection by CAP3, representing the lytic cystoviruses. Genome sequencing of the three dsRNA segments of the isolated cystoviruses revealed low levels of homology, but conserved synteny with the only other reported cystoviruses that infect Pseudomonas species. In Pseudomonas, the cystoviruses are known to be enveloped phages surrounding their capsids with the inner membrane from the infected host. To characterize any membrane-associated glycoconjugates in the CAP3 cystovirus, carbohydrate staining was used to identify a low molecular weight lipid-linked glycoconjugate subsequently identified by mutagenesis and mass-spectrometry as bacterial lipooligosaccharide. Together, this study demonstrates the isolation of new Acinetobacter-infecting phages and the determination of their cell receptors. Further, we describe the genomes of a new genus of Cystoviruses and perform an initial characterization of membrane-associated glycoconjugates.


Assuntos
Acinetobacter/virologia , Bacteriófagos/química , Bacteriófagos/genética , Cystoviridae/química , Cystoviridae/genética , Podoviridae/química , Podoviridae/genética , RNA Viral/genética , Acinetobacter/efeitos dos fármacos , Antibacterianos/farmacologia , Bacteriófagos/classificação , Bacteriófagos/metabolismo , Cystoviridae/classificação , Cystoviridae/metabolismo , Farmacorresistência Bacteriana Múltipla , Cromatografia Gasosa-Espectrometria de Massas , Genoma Viral , Filogenia , Podoviridae/classificação , Podoviridae/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , RNA Viral/metabolismo , Receptores Virais/genética , Receptores Virais/metabolismo
14.
Int J Mol Sci ; 22(7)2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33804872

RESUMO

Granulibacter bethesdensis can infect patients with chronic granulomatous disease, an immunodeficiency caused by reduced phagocyte NADPH oxidase function. Intact G. bethesdensis (Gb) is hypostimulatory compared to Escherichia coli, i.e., cytokine production in human blood requires 10-100 times more G. bethesdensis CFU/mL than E. coli. To better understand the pathogenicity of G. bethesdensis, we isolated its lipopolysaccharide (GbLPS) and characterized its lipid A. Unlike with typical Enterobacteriaceae, the release of presumptive Gb lipid A from its LPS required a strong acid. NMR and mass spectrometry demonstrated that the carbohydrate portion of the isolated glycolipid consists of α-Manp-(1→4)-ß-GlcpN3N-(1→6)-α-GlcpN-(1⇿1)-α-GlcpA tetra-saccharide substituted with five acyl chains: the amide-linked N-3' 14:0(3-OH), N-2' 16:0(3-O16:0), and N-2 18:0(3-OH) and the ester-linked O-3 14:0(3-OH) and 16:0. The identification of glycero-d-talo-oct-2-ulosonic acid (Ko) as the first constituent of the core region of the LPS that is covalently attached to GlcpN3N of the lipid backbone may account for the acid resistance of GbLPS. In addition, the presence of Ko and only five acyl chains may explain the >10-fold lower proinflammatory potency of GbKo-lipidA compared to E. coli lipid A, as measured by cytokine induction in human blood. These unusual structural properties of the G.bethesdensis Ko-lipid A glycolipid likely contribute to immune evasion during pathogenesis and resistance to antimicrobial peptides.


Assuntos
Acetobacteraceae/metabolismo , Doença Granulomatosa Crônica/microbiologia , Lipídeo A/química , Acetatos/análise , Acetobacteraceae/isolamento & purificação , Acetobacteraceae/patogenicidade , Sequência de Carboidratos , Citocinas/sangue , Doença Granulomatosa Crônica/sangue , Humanos , Lipídeo A/metabolismo
15.
Nat Commun ; 11(1): 3797, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32732998

RESUMO

Receptor-mediated perception of surface-exposed carbohydrates like lipo- and exo-polysaccharides (EPS) is important for non-self recognition and responses to microbial associated molecular patterns in mammals and plants. In legumes, EPS are monitored and can either block or promote symbiosis with rhizobia depending on their molecular composition. To establish a deeper understanding of receptors involved in EPS recognition, we determined the structure of the Lotus japonicus (Lotus) exopolysaccharide receptor 3 (EPR3) ectodomain. EPR3 forms a compact structure built of three putative carbohydrate-binding modules (M1, M2 and LysM3). M1 and M2 have unique ßαßß and ßαß folds that have not previously been observed in carbohydrate binding proteins, while LysM3 has a canonical ßααß fold. We demonstrate that this configuration is a structural signature for a ubiquitous class of receptors in the plant kingdom. We show that EPR3 is promiscuous, suggesting that plants can monitor complex microbial communities though this class of receptors.


Assuntos
Lipopolissacarídeos/metabolismo , Lotus/microbiologia , Lotus/fisiologia , Mesorhizobium/metabolismo , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Mesorhizobium/genética , Fixação de Nitrogênio/fisiologia , Proteínas de Plantas/genética , Dobramento de Proteína , Nódulos Radiculares de Plantas/microbiologia , Nódulos Radiculares de Plantas/fisiologia , Simbiose/fisiologia
16.
Nat Commun ; 9(1): 2747, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-30013106

RESUMO

The high mortality of invasive fungal infections, and the limited number and inefficacy of antifungals necessitate the development of new agents with novel mechanisms and targets. The fungal cell wall is a promising target as it contains polysaccharides absent in humans, however, its molecular structure remains elusive. Here we report the architecture of the cell walls in the pathogenic fungus Aspergillus fumigatus. Solid-state NMR spectroscopy, assisted by dynamic nuclear polarization and glycosyl linkage analysis, reveals that chitin and α-1,3-glucan build a hydrophobic scaffold that is surrounded by a hydrated matrix of diversely linked ß-glucans and capped by a dynamic layer of glycoproteins and α-1,3-glucan. The two-domain distribution of α-1,3-glucans signifies the dual functions of this molecule: contributing to cell wall rigidity and fungal virulence. This study provides a high-resolution model of fungal cell walls and serves as the basis for assessing drug response to promote the development of wall-targeted antifungals.


Assuntos
Aspergillus fumigatus/ultraestrutura , Parede Celular/ultraestrutura , Quitina/química , Polissacarídeos Fúngicos/química , Glucanos/química , beta-Glucanas/química , Aspergillus fumigatus/química , Aspergillus fumigatus/patogenicidade , Sequência de Carboidratos , Parede Celular/química , Interações Hidrofóbicas e Hidrofílicas , Espectroscopia de Ressonância Magnética/métodos , Virulência , Água/química
18.
Nat Commun ; 9(1): 390, 2018 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-29374171

RESUMO

Lipopolysaccharides (LPS) are among the known pathogen-associated molecular patterns (PAMPs). LPSs are potent elicitors of PAMP-triggered immunity (PTI), and bacteria have evolved intricate mechanisms to dampen PTI. Here we demonstrate that Xylella fastidiosa (Xf), a hemibiotrophic plant pathogenic bacterium, possesses a long chain O-antigen that enables it to delay initial plant recognition, thereby allowing it to effectively skirt initial elicitation of innate immunity and establish itself in the host. Lack of the O-antigen modifies plant perception of Xf and enables elicitation of hallmarks of PTI, such as ROS production specifically in the plant xylem tissue compartment, a tissue not traditionally considered a spatial location of PTI. To explore translational applications of our findings, we demonstrate that pre-treatment of plants with Xf LPS primes grapevine defenses to confer tolerance to Xf challenge.


Assuntos
Imunidade Inata/imunologia , Lipopolissacarídeos/imunologia , Antígenos O/imunologia , Doenças das Plantas/imunologia , Imunidade Vegetal/imunologia , Xylella/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/imunologia , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/genética , Lipopolissacarídeos/metabolismo , Antígenos O/metabolismo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Vitis/genética , Vitis/imunologia , Vitis/microbiologia , Xylella/metabolismo , Xylella/fisiologia
19.
Traffic Inj Prev ; 19(3): 256-263, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-28910537

RESUMO

OBJECTIVE: This article discusses differences between a side impact procedure described in United Nations/Economic Commission for Europe (UN/ECE) Regulation 129 and scenarios observed in real-world cases. METHODS: Numerical simulations of side impact tests utilizing different boundary conditions are used to compare the severity of the Regulation 129 test and the other tests with different kinematics of child restraint systems (CRSs). In the simulations, the authors use a validated finite element (FE) model of real-world CRSs together with a fully deformable numerical model of the Q3 anthropomorphic test device (ATD) by Humanetics Innovative Solution, Inc. RESULTS: The comparison of 5 selected cases is based on the head injury criterion (HIC) index. Numerical investigations reveal that the presence of oblique velocity components or the way in which the CRS is mounted to the test bench seat fixture is among the significant factors influencing ATD kinematics. The results of analyses show that the side impact test procedure is very sensitive to these parameters. A side impact setup defined in Regulation 129 may minimize the effects of the impact. CONCLUSIONS: It is demonstrated that an artificial anchorage in the Regulation 129 test does not account for a rotation of the CRS, which should appear in the case of a realistic anchorage. Therefore, the adopted procedure generates the smallest HIC value, which is at the level of the far-side impact scenario where there are no obstacles. It is also shown that the presence of nonlateral acceleration components challenges the quality of a CRS and its headrest much more than a pure lateral setup.


Assuntos
Aceleração/efeitos adversos , Acidentes de Trânsito/prevenção & controle , Sistemas de Proteção para Crianças/normas , Traumatismos Craniocerebrais/prevenção & controle , Lesões do Pescoço/prevenção & controle , Cintos de Segurança/normas , Criança , Europa (Continente) , Cabeça/fisiologia , Humanos , Manequins , Valores de Referência , Nações Unidas
20.
J Biol Chem ; 291(40): 20946-20961, 2016 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-27502279

RESUMO

In the symbiosis formed between Mesorhizobium loti strain R7A and Lotus japonicus Gifu, rhizobial exopolysaccharide (EPS) plays an important role in infection thread formation. Mutants of strain R7A affected in early exopolysaccharide biosynthetic steps form nitrogen-fixing nodules on L. japonicus Gifu after a delay, whereas mutants affected in mid or late biosynthetic steps induce uninfected nodule primordia. Recently, it was shown that a plant receptor-like kinase, EPR3, binds low molecular mass exopolysaccharide from strain R7A to regulate bacterial passage through the plant's epidermal cell layer (Kawaharada, Y., Kelly, S., Nielsen, M. W., Hjuler, C. T., Gysel, K., Muszynski, A., Carlson, R. W., Thygesen, M. B., Sandal, N., Asmussen, M. H., Vinther, M., Andersen, S. U., Krusell, L., Thirup, S., Jensen, K. J., et al. (2015) Nature 523, 308-312). In this work, we define the structure of both high and low molecular mass exopolysaccharide from R7A. The low molecular mass exopolysaccharide produced by R7A is a monomer unit of the acetylated octasaccharide with the structure (2,3/3-OAc)ß-d-RibfA-(1→4)-α-d-GlcpA-(1→4)-ß-d-Glcp-(1→6)-(3OAc)ß-d-Glcp-(1→6)-*[(2OAc)ß-d-Glcp-(1→4)-(2/3OAc)ß-d-Glcp-(1→4)-ß-d-Glcp-(1→3)-ß-d-Galp]. We propose it is a biosynthetic constituent of high molecular mass EPS polymer. Every new repeating unit is attached via its reducing-end ß-d-Galp to C-4 of the fourth glucose (asterisked above) of the octasaccharide, forming a branch. The O-acetylation occurs on the four glycosyl residues in a non-stoichiometric ratio, and each octasaccharide subunit is on average substituted with three O-acetyl groups. The availability of these structures will facilitate studies of EPR3 receptor binding of symbiotically compatible and incompatible EPS and the positive or negative consequences on infection by the M. loti exo mutants synthesizing such EPS variants.


Assuntos
Lotus/metabolismo , Mesorhizobium/metabolismo , Mutação , Epiderme Vegetal/metabolismo , Polissacarídeos Bacterianos/metabolismo , Simbiose/fisiologia , Configuração de Carboidratos , Lotus/genética , Lotus/microbiologia , Mesorhizobium/genética , Epiderme Vegetal/genética , Epiderme Vegetal/microbiologia , Polissacarídeos Bacterianos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...